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Abstract. We propose a theoretical model to account for the recently observed magnetic moment reduction
of gadolinium in fullerenes. While this reduction has been observed also for other trivalent rare-earth
atoms (Dy3+, Er3+, Ho3+) in fullerenes, and can be ascribed to crystal field effects, the explanation of
this phenomena for Gd3+ is not straightforward due to the spherical nature of its ground state (S = 7/2,
L = 0). In our model the momentum reduction is the result of a subtle interplay between hybridisation
and the spin-orbit interaction.

PACS. 71.20.Tx Fullerenes and related materials; intercalation compounds – 73.22.-f Electronic structure
of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals – 75.75.+a Magnetic properties
of nanostructures

1 Introduction

Endohedral metallofullerenes M@C82 are novel materials
that have attracted a wide interest in physics, chemistry
and in material or biological sciences for the large variety
of promising applications of their peculiar properties [1–3].
In endohedral metallofullerenes, a positively charged core
metal is off-centre in a negatively charged carbon cage, re-
sulting in strong metal-cage interaction and intrafullerene
charge transfer from the metal to the cage [1,4–6].

The magnetism of these systems is mainly due to the
spin of the entrapped metals. In a series of average mag-
netisation measurements a paramagnetic behaviour has
been observed [7–10], with negative Weiss temperatures.
The negative Weiss temperature indicates the presence of
a weak antiferromagnetic interaction between the cage and
the metal, and between neighbouring cages. However, for
heavy rare-earths (RE) endofullerenes [10], ferromagnetic
coupling has been mentioned in the sub-20 K range. In
the case of heavy RE, these experiments gave a smaller
number of magnetons per encaged ion than for the free
ion. This result has been phenomenologically ascribed to
the cage crystal field interaction for high L ions and, for
the L = 0 Gd case, to the antiferromagnetic interaction
between the ion and the cage.

In a recent work [11], the local magnetic properties
of heavy RE metallo centres have been characterised us-
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ing X-ray magnetic circular dichroism and (XMCD) X-ray
absorption spectroscopy (XAS) at the M4 and M5 reso-
nances (3d → 4f transitions). The absorption spectra in
this study were accurately fitted assuming trivalent ions
(4fn electronic structure with n = 7 for Gd, n = 9 for
Dy...) and XMCD confirmed that there is a strong reduc-
tion of the measured ion magnetisation compared to the
free ion case.

For L �= 0 ions the reduction was reproduced by a
model Hamiltonian where a weak crystal field prevents
the ion total angular moment J from aligning completely
along the magnetic field. The L = 0 ion of trivalent
gadolinium was more difficult and the hybridisation model
did not give a satisfactory explanation.

In fact, although hybridisation gives antiferromagnetic
coupling with the cage and accounts (in the Gd case) for
a 14% reduction of the average moment (Gd plus cages),
it cannot explain the reduction of the moment localised
on the Gd ion (see next section).

We show in the present paper that the combined ac-
tion of hybridisation and spin-orbit interaction can have
a dramatic effect on the observed magnetic moment.

In our model the Gd ground state is basically 4f7 with
a 4f75d1 component and a smaller 4f8 one. The latter two
components are due to electron backdonation from the
cage. The cage orbitals backdonation is determined by the
location of the gadolinium with respect to the cage. The
encaged Gd ion at equilibrium is displaced off centre, and
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stands, inside the cage, at a position adjacent to a C=Cπ

double bond [12]. The C=Cπ bond electrons are partly
donated to the gadolinium 5d orbitals and, to a minor
extent, to the 4f shell. Another source of backdonation
comes from the electrons close to the Fermi energy that
populate the C=C∗

π antibonding orbitals. These orbitals
are not empty because the cage is negatively charged.

This hybridisation of the C=Cπ bond with 5d is no
doubt the main cause of the Gd-cage bond but for the
study of the magnetic effects we consider both contribu-
tions, the one from C=Cπ and that from the C=C∗

π anti-
bonding orbital.

In Section 2 we consider the effect of spin-orbit inter-
actions on the bond resulting from hybridisation between
C=Cπ, 5d and 4f orbitals (the Gd-cage bond). In Sec-
tion 3 we consider the hopping of the unpaired cage elec-
tron on the Gd ion. In both Sections 2 and 3 we use an
effective Hamiltonian on a model space obtained by ap-
plying partitioning techniques which are discussed in Sec-
tion 2. In both cases we obtain a non-negligeable splitting
of the Gd energy levels as a function of Gd magnetic mo-
ment projection along the Gd-cage bond axis. The split-
ting is calculated by our analytical formula in Sections 2
and 3 and its origin is discussed qualitatively in Section 4.

The effect of this splitting on the magnetic properties is
calculated using a realistic set of parameters, and is com-
pared to experiments in Section 5 where we explain the Gd
moment reduction and anomalies in the low temperature
magnetisation profiles [10] that had not been understood
so far.

2 Hybridisation model and spin-orbit
for the C=Cπ hybridised orbital

In the following discussion we denote the angular momen-
tum quantisation axis by z and define it to be parallel
to the displacement axis passing through the cage centre
and the Gd position. The Hamiltonian that we use for the
treatment of the C=Cπ hybridised orbital is:

H = HGd + td
∑

σ

(d+
σ cσ + c+

σ dσ)

+ tf
∑

σ

(f+
σ cσ + c+

σ fσ) − Jp(c+
σ uσ + u+

σ cσ). (1)

In this equation σ represents the electron spin, d is the
annihilation operator for an electron in the 5d orbital with
3z2−r2 symmetry (which is the orbital with the strongest
hybridisation), f annihilates the electrons in the 4f shell
with 5z3−3z symmetry, c+ creates an electron in the C =
Cπ bonding orbital and u is the operator for the unpaired
electron. The hopping strengths are given by parameters
td and tf while Jp is the exchange between the unpaired
orbital and the C=Cπ one. Finally HGd is the Hamiltonian
of an isolated Gd ion.

A non-perturbative solution for our Hamiltonian can
be obtained in a concise form using partitioning tech-
niques. Good descriptions of this technique can be found

in the literature [13]. First we divide the full Hilbert space
into a model space and the remaining space, then we de-
fine the effective Hamiltonian acting in the model space.
Our model space is formed by all the states in which the
gadolinium has a 4f75d0 configuration, the C=Cπ bond-
ing orbital is full, and one unpaired electron is in the u
orbital. The remaining space is formed by all the states in
which the gadolinium has a 4f75d1 or 4f8 configuration,
the C=Cπ bonding orbital has one electron, and one un-
paired electron is in the u orbital. Denoting by P the pro-
jector on the model space and by Q the projector on the
remaining space, the effective Hamiltonian Heff is writ-
ten [13]:

Heff = PHP + PHQ
1

E − QHQ
QHP (2)

where E is the eigenenergy of the eigenstate. In this for-
mula, with our definition of the model space, the hopping
terms are isolated in PHQ and QHP, while the atomic
interactions HGd and the Jp exchange term are isolated
in PHP and QHQ. Switching off the hopping causes the
ground state of the Hamiltonian to become the ground
state of PHP which is the ground state of a free Gd ion
with a 4f7 configuration plus an unpaired electron on the
cage. The ground state of the 4f7 configuration is charac-
terised by a total spin Sf7

= 7/2 and an angular moment
L = 0. Without hybridisation the ground state of the sys-
tem, considering also the unpaired electron, has a degener-
acy of 16. If we switch on the hopping, the QHP and PHQ
terms are no longer zero and degeneracy is removed. We
can neglect the Heff terms connecting the ground state
of 4f7 to other excited states of the 4f7 configuration
because of the strong gap due to the exchange interac-
tion between 4f electrons. Within this approximation our
model space is simply the degenerate ground-space. An-
other important simplification is made by considering that
equation (1) has rotational symmetry around the z axis
and, thanks to angular moment conservation, we are left
with a two-dimensional model space which is spanned by
the two states |Sf7

z , σ〉 and |Sf7

z +2σ,−σ〉 where Sz, in the
expression |Sf7

z , σ〉, is the 4f7 spin z component and σ is
the spin of the unpaired electron. The matrix elements of
Heff between two states a and b of the model space can be
calculated with a summation over the eigenstates of QHQ

〈a|Heff |b〉 =
∑

n

〈a|H |n〉 1
E − 〈n|H |n〉 〈n|H |b〉 (3)

where |n〉 are eigenstates of QHQ and belong to the re-
maining space. The term 〈a|PHP |a〉, being a constant, has
been removed. The sum can be split in two by dividing the
remaining space in two subspaces which block-diagonalise
QHQ: one with the gadolinium in its 4f75d1 configura-
tion and another with the Gd in its 4f8 configuration. We
write:

Heff = t2dH
f7d1

eff + G2t2fHf8

eff . (4)

In this equation the Hf7d1

eff term is obtained from equa-
tion (3) restraining the sum over |n〉 to the 4f75d1
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subspace and, analogously, the Hf8

eff term is obtained by
summing only over the f8 subspace. The factor G, appear-
ing in the the Hf8

eff term, will be discussed in detail later,
but we anticipate now that its value is

√
8/7 and has been

abstracted out to allow writing, in the rest of the paper,
the same analytical formula for both Hf8

eff and Hf7d1

eff .

The complete expression for Hf7d1

eff and Hf8

eff requires
writing the complete set of eigenstates of the remaining
subspaces in terms of a complete set of commuting ob-
servables (CSCO).

As the QHQ operator does not correlate cage variables
with Gd ion ones, the CSCO is the union of the CSCO for
an isolated ion and the CSCO for the cage.

The cage is characterised, in the remaining space
(which is obtained by moving one electron from the bond-
ing orbital to the gadolinium), by the total spin moment
Scage and by Scage

z . These result from the coupling of the
unpaired electron spin with the spin of the electron left
on the C=Cπ orbital.

The ion is characterised, in SL coupling by S, L, J and
Jz. For the 4f75d1 configuration S may take the values 3
and 4, L the value 2 and J the values from S − L up to
S + L. For the 4f8 configuration S may take the value 3,
L the value 3 and J the values from 0 up to 6. The 4f7d1

configuration is obtained adding a d electron with mz = 0
(3z2 − r2 orbital) to the 4f7 ground state:

d+
0σ|4f7SfSf

z 〉 =
∑

S,L=2,J,Jz

|4f75d1SLJJz〉C(Sf , 1/2, Sf
z , σ; S, Sf

z + σ)

C(S, L, Sf
z + σ, 0; J, Jz) (5)

in this equation the symbols C are the Clebsch-Gordan
coefficients. The expression for the 4f8 states is analo-
gous, but the sum over S is fixed to S = 3 , and, due
to the equivalence of 4f electrons, a parentage coefficient
appears [14–16]:

f+
0σ|4f7SfSf

z 〉 =

−
√

8
∑

S=3,L=3,J,Jz

GSL
Sf Lf |4f8SLJJz〉

C(Sf , 1/2, Sf
z , σ; S, Sf

z + σ)C(S, L, Sf
z + σ, 0; J, Jz) (6)

where GSL
Sf Lf = 1/

√
7. We have factored out

√
8/7 in

equation (3) and we can now write the same analytical
expressions Hconf

eff for Hf7d1

eff and Hf8

eff . These expressions
are, for the diagonal elements:

Hconf
eff (Sf

z , σ → Sf
z , σ) =

∑

S

∑

J

F1(S, J, Sf
z , σ)

E − ∆conf − Econf(S, J) − Ecage(1)

+
∑

S

∑

J

∑

Scage

F2(S, J, Sf
z , σ)

2(E−∆conf−Econf(S, J)−Ecage(Scage))
(7)

where

F1(S, J, Sf
z , σ) = C(Sf , 1/2, Sf

z ,−σ; S, Sf
z − σ)2

× C(S, Lconf , Sf
z − σ, 0; J, Sf

z − σ)2

F2(S, J, Sf
z , σ) = C(Sf , 1/2, Sf

z , +σ; S, Sf
z + σ)2

× C(S, Lconf , Sf
z + σ, 0; J, Sf

z + σ)2.

In equation (7) E is an eigenvalue, Lconf takes the value
2 for f7d1, and value 3 for f8. The symbol ∆conf is de-
fined as the difference between the energy of the system
having Gd in a configuration conf with quantum numbers
S,Lconf , having one electron less on the cage, and the en-
ergy of the configuration f8 in absence of hopping, spin-
orbit coupling and cage electron exchange. The energy cor-
rections for intra-atomic interactions and for cage electron
exchange are represented by Econf (S, J) and Ecage(Scage)
respectively.

In a similar manner the off-diagonal interaction terms
are calculated:

Hconf
eff (Sf

z , σ → Sf
z + 2σ,−σ) =

∑

S

∑

J

∑

Scage

(−1)Scage

×C(Sf , 1/2, Sf
z , σ; S, Sf

z + σ)

×C(Sf , 1/2, Sf
z + 2σ,−σ; S, Sf

z + σ)

× C(S, Lconf , Sf
z + σ, 0; J, Sf

z + σ)2

2(E−∆conf−Econf(S, J)−Ecage(Scage))
. (8)

The effective Hamiltonian described by equations (4, 7,
8) has the following remarkable property: in the limit of
zero spin-orbit Econf (S, J) is independent of J and, as
a consequence, the matrix describing Heff in the two di-
mensional space spanned by the two vectors (Sf

z , σ) and
(Sf

z + 2σ,−σ) can be written, after some algebra, in the
following form:

Heff |so=0 = A +
∑

S

BSvS ⊗ vS (9)

where A is a constant, BS depends on S, and vS is the
versor:

vS = (C(Sf , 1/2, Sf
z , +σ; S, Sf

z + σ),

C(Sf , 1/2, Sf
z + 2σ,−σ; S, Sf

z + σ)). (10)

This versor represents a state where the Gd spin is coupled
with the unpaired electron spin to give a total system spin
S. To derive equation (9) from equations (7, 8) we have
used the identity

C(Sf , 1/2, Sf
z ,−sz; S, Sf

z − sz)2 =
1/2 + S

1/2 + Sf

− C(Sf , 1/2, Sf
z , +sz; S, Sf

z + sz)2. (11)

In the case of zero spin-orbit coupling we have therefore
a system described by the Hamiltonian (9) which has two
eigenspaces corresponding to a total spin S = 3 (antifer-
romagnetic coupling with the cage) and S = 4 (ferromag-
netic coupling with the cage). With some further algebra
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Table 1. Dependence of 4f8 ground state energies as a function of total moment J . First order formula (first line) is compared
to numerical results (second line) obtained using parameters from reference [18]. Units are eV.

J = 6 J = 5 ... .. .. .. J = 0
Equation (15) –0.295 –0.098 0.065 0.197 0.295 0.361 0.394

E4f8(3, J) − E4f7 –0.302 –0.066 0.076 0.189 0.268 0.321 0.346

one can show that for positive Jp (cage electron exchange
in Eq. (1)), and considering td � tf , one has B3 < B4.
The ground state is therefore given by antiferromagnetic
coupling with the cage and, for zero spin-orbit coupling, is
represented by the versor vS that can be written explicitly:

v = ((7/2 + Sz)1/2,−(7/2 − Sz + 1)1/2)
1√
8
. (12)

The local moment of Gd, in the antiferromagnetic ground
state, can be almost fully aligned along the magnetic field.
In fact, on the basis of equation (12) one should observe,
at saturation

〈Sf
z 〉 = (7/2 × 7 + 5/2)/8 = 3.375 (13)

corresponding to a 3.6% reduction which is very much less
than the 20% reduction of the local magnetic moment ob-
served with XMCD at the M4 and M5 resonances [11].
We deduce that the observed X-ray spectra [11] are a sig-
nature of a non-negligible spin-orbit effect. To check the
effect of spin-orbit coupling, all we have to do is to switch
on the Econf (S, J) term in equations (4),(7) and (8), us-
ing a realistic set of parameters for ∆f7d1

, ∆f8
, td,tf , Jp

and the spin-orbit interactions ζ5d and ζ4f .

2.1 Choice of parameters

The atomic energies Econf(S, J) can be calculated using
standard methods [17]. For 4f7d1 configuration, in LS
coupling, they are:

E4f7d1(4, J) = −Jex + ζ5d(J2 + J − 26)/16 (14)

E4f7d1(3, J) = Jex/7 + ζ5d(18 − J2 − J)/16.

We take ζ5d = 0.1eV , while Jex, which modulates the
4f5d interaction given by −Jex(1+4(Sf .Sd)/7)/2, is Jex =
0.7 eV. These coefficients have been calculated using the
Cowan’s code [18].

The 4f8 energies, in LS coupling, are:

E4f8
(3, J) = ζ4f

24 − J(J + 1)
12

(15)

and we take ζ4f = 0.1975 eV [18]. The exact values
of Econf(S, J) are very important because the J depen-
dency represents the action of the spin-orbit interaction
and breaks the degeneracy in the Jz variable. We have
checked numerically , with an atomic multiplet code [18],
the validity of expressions (14) and (15). We get a very
good agreement for the 4f7d1 configuration but we found
small differences between the formula (15) in LS coupling

and the exact numerical values for a 4f8 configuration.
We show in Table 1 the comparison between the two sets
of energies, one obtained numerically and the other from
equation (15). In the following section the numerical set
of energies will be used for the 4f8 configuration.

The cage energy is expressed as a function of the intra-
cage exchange Jp, which enters the following expression for
the cage energy:

Ecage(1) = −Jp (16)
Ecage(0) = Jp. (17)

The intra-cage exchange Jp depends on the wavefunction
of the unpaired cage electron, which is not known, and we
consider values between zero and a maximum given by the
atomic value of a 2px2py exchange that is about 0.8 eV.
We show in the next section that the exact value of Jp has
only a small influence on the magnetic results

The parameters governing the hopping to the 5d or-
bital are chosen to be td = 2 eV and ∆f7d1

= 1 eV. For
the hopping to the 4f shell we chose tf = 0.4 eV and
∆f8

= 2 eV. On the basis of these parameters we can
already estimate the average number of electrons back-
donated to the gadolinium and compare it with ab-initio
calculations [12]. To calculate the 5d and 4f occupancies
we can neglect spin-orbit coupling and exchange which in-
fluence mainly the magnetic properties. These properties
will be studied later. We now write the effective Hamilto-
nian which accounts for hopping and zero spin-orbit cou-
pling. It is given by equation (9) setting B = 0 and re-
taining only the diagonal A term. More precisely we have:

Heff |so=0,Jp=0 = t2d

(
9/8

E − ∆f7d1 + Jex

+
7/8

E − ∆f7d1 − Jex/7

)
+ t2f

1
E − ∆f8 . (18)

To get the fractional back-donated charge, so, we solve
the equation E = Heff |so=0,Jp=0 and then calculate the
derivatives of E as a function of ∆f7d1

and ∆f8
to get the

fractions on 5d and on 4f .
Our parameter choice gives 0.44 electrons on 5d and

a very small amount of 0.005 electrons back-donated to
the 4f shell. These fractions have to be compared with
ab-initio calculations [12] which give 0.48 electrons on 5d
and 0.02 electrons back-donated to 4f . We are in good
agreement concerning 5d electrons but the fraction for 4f
is four times smaller. In the framework of our model we
could not do any better for 4f without some unphysical
assumptions like ∆f7d1

> ∆f8
or tf � td.
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Fig. 1. Energies as a function of intra-cage exchange for Sz be-
tween 1 (smallest energy) and 3 (highest energy). The ground
state for Sz = 0 is taken as the origin of the energy scale. The
dashed lines are calculated without any 4f8 contribution.

2.2 Numerical results

We diagonalise the effective Hamiltonian (Eq. (4)) in
the model space. As explained above Heff can be
block-diagonalised on the two-dimensional subspaces
spanned by the couples of vectors (|Sf7

z , σ〉, |Sf7

z +
2σ,−σ〉). Each two-dimensional subspace has a definite
total spin Jz.

The lowest eigenvalue of each subspace corresponds
to antiferromagnetic coupling between the Gd and the
cage. Using the set of parameters discussed in the previ-
ous section we calculate the antiferromagnetic eigenstates
for Jz = 0 up to Jz = 3 (as a consequence of time reversal
the Jz space is degenerate with −Jz).

Without spin-orbit coupling all these four eigenstates
would be degenerate, but this is not the case with our set
of parameters discussed above where the spin-orbit cou-
pling is correctly accounted for. For the magnetic proper-
ties of our system, the important quantities are the energy
differences between eigenstates E(Sz). We plot in Figure 1
the energy differences E(Sz) − E(0) for Sz = 1 up to
Sz = 3 versus the unknown parameter Jp.

In this figure we show, with solid lines, the energies ob-
tained from the diagonalisation of the equation (4) Hamil-
tonian using the full set of parameters discussed in the
previous section. To check the effect of the 4f8 compo-
nent, we show with dashed lines the energies calculated
by setting t4f = 0. The lowest lines correspond to Jz = 1
and the highest to Jz = 3, while the ground state always
corresponds to Jz = 0. We can see that our model is tol-
erant with respect to the choice of Jp.

3 Hybridisation model and spin-orbit
correction for the unpaired cage electron

We have seen in the previous section that the spin-orbit
interaction induces a Jz dependency in the ground state
energy. The effect of this Jz dependency on magnetisation

profiles is calculated in the following section and compared
with experiment. We have already found, however, a dis-
crepancy between the 4f occupancies predicted by equa-
tion (18) and those predicted by ab-initio calculations [12].
This discrepancy is an evidence that hopping from orbitals
different from the C=Cπ one need to be taken into ac-
count. In this section we consider hopping of the unpaired
cage electron onto the 4f orbital. The hopping onto the
5d orbital could, at first sight, be considered more impor-
tant. However this is not the case because the 5d orbital is
already hybridised with C=Cπ and this raises the energy
of the antibonding hybridised 5d orbital. The following
Hamiltonian matrix, for one hybridised electron, provides
numerical insight into this phenomenon. We consider:





Ep tpd 0 0
tpd Ed tud 0
0 tud Eu 0
0 0 0 Ef



 (19)

where Ep < Ed < Eu < Ef represent the bare energies of
an electron on the C=Cπ orbital, the 5d energy, the bare
energy of the unpaired electron orbital and that of the 4f .
As an example we consider Ep = 0, Ed = 1, Eu = 1.5
and Ef = 2.0. The hopping between p and d is taken as
in the previous section tpd = 2 while tud = tpd/4. With
this choice of parameters we find that the lowest energy
eigen-orbital is the hybridised 5d-C=Cπ with E = −1.6,
but the second lowest has E = 1.4 and has a surpris-
ingly strong u character, despite of the high energy of
the unpaired electron orbital. At energy E = 2, slightly
greater than the u orbital, we have the 4f orbital, and
finally it is at the highest energy E = 2.7 that we find the
hybridised antibonding 5d-C=Cπ orbital. By the way we
note that, in such a simple model, the 5d spectral weight
of the hybridised 5d orbital is split into two main com-
ponents: a bigger one at the upper end of the spectra,
corresponding to an empty 5d orbital, and a smaller one,
which has a predominant C=C character, corresponding
to a filled orbital. This explains why resonant photoemis-
sion spectroscopy [19] cannot provide spectral evidence of
the non-negligeable Gd2+ component. Within this simple
picture the u orbital maintains its character. If we intro-
duce an hypothetical uf hybridisation term we could ef-
fectively couple u to the f orbitals because of the small
energy difference. The real system is of course much more
complicated than our one particle picture, with complex
electron-electron correlations and screenings but we set a
limit in order to address the problem with a phenomeno-
logical model. We consider the hopping of the unpaired
electron to 4f orbital by the following Hamiltonian:

H = HGd + tfu

∑

σ

(f+
σ uσ + u+

σ fσ). (20)

The model is solved with the same partitioning technique
that we used in the previous section. After some algebra
we get the effective Hamiltonian matrix in the two dimen-
sional subspace

Heff = F (Sz)vSz ⊗ vSz (21)
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where

F (Sz) = t2uf

8
7

∑

J

C(3, 3, Sz, 0; J, Sz)2

E − ∆ − E4f8

J

. (22)

The energy E4f8

J is the spin-orbit energy of the state S =
3, L = 3 as a function of J and has been given in the
previous section. Our choice of parameters is ∆ = 0.7 eV
and tuf = 0.1 eV. With this choice the energy differences
E(Sz) − E(0) for Sz = 1 up to Sz = 3 are 0.4, 1.5 and
2.8 meV.

4 Qualitative comments on the origin
of the splitting

Without hybridisation the ground state of our system is
formed by a trivalent Gd3+ ion and a negative cage. The
ion-cage bond forms because cage electrons, in particu-
lar those on the C=Cπ bond, lower their kinetic energy
by delocalising themselves on the Gd ion. The magnitude
of this decrease in energy is governed by two factors: the
overlap between the cage and ion orbitals, and the de-
nominator appearing in equations (7, 8) and (22). Such
a denominator is negative because the empty orbitals on
the Gd ion are at higher energies than the cage ones. The
main contribution in the sums appearing in such equa-
tions will be due to the Gd2+ ion eigenstates having lower
energy. According to whether the cage electron hops to a
more than half-filled or less than half-filled Gd shell, the
Gd2+ lowest state has S parallel or anti-parallel to L. As
the hopping brings an electron onto a mz = 0 orbital,
the orbital angular moment Gd2+ has a zero component
along z axis. The lowest energy state spin S, being paral-
lel or antiparallel, will also have a zero z component. This
is visible, for example, in the Clebsch-Gordan coefficient
C(3, 3, Sz, 0; J, Sz) of equation (22) which, for J = 6 (S
parallel to L), takes its largest value for Sz = 0.

5 Comparison with experiments

The energy splitting has to be compared with the mag-
netic field strength. Considering a typical XAS-XMCD ex-
perimental case [11] with a 7 Tesla field, the energy gain,
obtained by aligning 7 Bohr magnetons from a perpen-
dicular to a parallel direction with the field, is 0.4 meV.
This energy is of the same order of magnitude of, or lower,
than the splitting caused by hybridisation plus spin-orbit
coupling.

This effect can therefore, depending on t and ∆, prevail
over the magnetic polarising field and suppress partially,
or completely, the magnetisation.

At zero temperature, the magnetisation parallel to the
Gd-cage bond, would be a discontinuous function of the
magnetising field. For a perpendicular polarising field the
magnetisation curve would be instead continuous.

In a real system one should take into account tem-
perature and disorder. Temperature effects would tend to
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Fig. 2. Magnetisation for temperatures of 1.8, 3, 6 and 8 K.
Left side: hybridised C=Cπ model. Right side: hybridised un-
paired electron model. Dashed line: magnetisation curve with-
out spin-orbit coupling.

smear out discontinuities. Any disorder of the gadolinium
displacement axis direction in the sample would have a
similar effect.

To compare with experiment we have calculated mag-
netisation curves at different temperatures in the case of a
random orientation of the displacement axis. We consider
the parameters discussed in the previous section and our
analytical formulas. The magnetisation is calculated, for a
given orientation of the displacement axis, by writing the
Hamiltonian matrix M in the antiferromagnetic subspace
of the model space. In the case of a magnetic field par-
allel to the displacement axis, Jz is still a good quantum
number and the energies are E(Jz)− BJz. In the general
case, the interaction with the magnetic field needs to be
similarly transformed by rotation matrices:

Mij = E(i)δ(i, j) − B
∑

k

R−1
ik kRkj (23)

where the indexes i, j, k may take the values from –3 up
to 3, representing the possible values of Jz, and R is the
representation of rotation in the J = 3 space. To calcu-
late the average magnetisation at finite temperature we
do a Boltzmann average over the eigenvectors of M , and
another average over an uniform distribution of the dis-
placement axis orientation.

The magnetisation is shown in Figure 2 for tempera-
tures of 1.8, 3, 6 and 8 K. The calculations on the left
side have been done for the hybridised C=Cπ model, us-
ing the energies E(Sz) calculated using formula (4) and
the atomic value of Jp. The calculations on the right side
have been done by adding to the energies E(Sz) the en-
ergy corrections calculated in the previous section for the
hybridised unpaired electron model. We plot also, with a
dashed line, the calculated magnetisation for zero spin-
orbit coupling. The XMCD experiment [11] corresponds
to H/T = 1 and a temperature of 7 K. We see in Figure 2
that a strong reduction of the magnetisation compared
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Fig. 3. Comparison with the experiment (dashed line,
Ref. [10]) for temperatures of 1.8 and 8 K.

to the dashed line (ideal value), is observed and that it
is not far from the 20% one observed with XMCD. The
hybridised C=Cπ model (left graph) under-estimates this
reduction. The magnetisation profile of Figure 2 can be
compared with Figure 8 of reference [10]. The experimen-
tal behaviour is reproduced qualitatively and, quantita-
tively. Figure 3 shows a comparison of our hybridised un-
paired electron model (solid lines) with the experimental
magnetic profiles taken by reference [10] (dashed lines).
The derivative of E(Sz) with respect to ∆ gives the oc-
cupancy of the 4f orbital due to the hybridised unpaired
electron and we get a value of 0.039. Considering that
we have also 0.005 electrons due to the hybridised C=Cπ

bond, the predicted 4f occupancy is therefore a factor 2
bigger than the one predicted by ab-initio calculations.

6 Conclusions

The highlighted effect can be resumed in the following
way: the combined effect of a non-isotropic hybridisation
and spin-orbit interaction induces systematically a Sz de-
pendence of the ground state energies of encaged ions.
The spin-orbit interaction tends to align S in a parallel
or antiparallel direction with respect to L. In our case the
gadolinium angular moment component Mz is zero both
for the 4f7 component and for the Gd2+ component due to
hopping and, for this reason, the lowest energy has a spin
moment Sz = 0 which is perpendicular to the hybridisa-
tion axis. We have studied, within a model Hamiltonian,
this effect using the partitioning technique of the Hilbert
space [13] which allows a concise treatment of the prob-
lem. We have compared our model to experiments using
a realistic set of parameters. These parameters have been
determined with an atomic code [18], except for the hy-
bridisation parameters for which a guess has been made
trying to respect as much as possible the 5d and 4f occu-
pancies predicted by ab-initio calculations. We have dis-
covered unexpectedly that, concerning the magnetic prop-
erties, it is the weak 4f8 component which plays the major
role, rather than the stronger 4f75d1 one. Our analyti-
cal formulas explain the local moment reduction observed

with XMCD, and the anomalous magnetisation profiles of
encaged gadolinium observed at low temperatures. Both
these effects had not been fully understood so far.
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in particular Nick Brookes, for introducing me to this subject
and motivating this analysis, and for the very fruitful discus-
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Bergevin for critically reading the manuscript and helping to
put it in a clearer form.
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